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Prelude : The Big Picture



The “Big Picture” (1)

*Energy sources  «Energyvectors °Energy usage
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The “Big Picture” (2)

* In order to * In order to “make °In order to “make
produce, stuff,” you need: stuff,” in a
g:::g%oxé?‘g?’::ﬁ « space, sustainable way
“make stuff” * energy * Sustainability of

* Energy * raw materials resources
production * Impact on the
* Cables, pipes environment

 Storage devices

* Manufactured
goods

e Contribution to
global warming



The “Big Picture” (3)

* Energy is the blood of economy

* Materials resources are the food of economy

* Energy resources are large CAPEX whatever is your choice,
and it is a long term commitment

* Choosing a couple “energy production/Energy vector” must
Integrate

* The needs

* The initial conditions ( what is the current situation?)
* The boundary conditions ( availability of resources...)
* The objectives ( economy, autonomy, ...)




The case for Nuclear energy

in @ decarbonated economy
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* Uranlum-235 atom & neutron

U235 + n — fission + 20r3n + 200 MeV

Jahangirabad institute of technalogy

Neutron Economy
Nature of the fuel ( enrichment)
Géometry of assemblies
Moderators to slow down neutrons
Absorbtion of excess neutrons

Evolution of elements
fission products
Actinides! Pu and minor actinides

Heat Extraction
Fluids
Circuits




Le phylum des réacteurs nucléaires




An academic reactor or reactor plant almost always has the following

basic characteristics: (1) It 1s simple. (2) It 1s small. (3) It 1is
cheap. (4) It 1s light. (5) It can be bullt very quickly. (6) It 1s
very flexible 1n purpose ("omnibus reactor"). (7) Very little develop-

ment 1s required. It will use mostly “off-the-shelf” components.
(8) The reactor 1s in the study phase. It 1s not being bullt now.

On the other hand, a practical reactor plant can be distinguished by the
following characteristics: (1) It 1s being built now. (2) It 1s behind
schedule. (3) It 1s requiring an lmmense amount of development on
apparently trivial items. Corrosion, 1n particular, 1s a problem.

(4) It 15 very expensive. (5) It takes a long time to build because of
the engineering development problems. (6) It 1s large. (7) It 1s
heavy. (8) It 15 complicated.



Technological Readyness level and decision strategies

Exploration and
research
To be impulsed

To be implemented To be industralised

NOW TOMORROW

PWR reactors with U Fusions reactors
- Fast breeder reactors

ith U/P I
Water cooled SMR’s - Huede Molten salt reactors
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Les centrales nucléaires dans le monde
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Matter and space
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Materials intensity
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Integration in a system...
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Structuring ideas on the role of

Nuclear energy: conditions for
sustainability
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* Uranlum-235 atom & neutron
>

U235+ n — fission + 2 or3 n + 200 MeV
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Neutron Economy
Nature of the fuel ( enrichment)
Géometry of assembilies
Moderators to slow down neutrons
Absorbtion of excess neutrons

Evolution of elements
fission products
Actinides! Pu and minor actinides

Heat Extraction
Fluids
Circuits




FUEL WASTE

ELECTRICITY and HEAT
v GENERATION
How can we secure the resource?
How can we limit the waste?




The wisdom of Fermi

closing the fuel cycle: transform
the waste into resource



Key ideas on nuclear physics (1)

* Fissile element: can undergo nuclear fission by neutron bombardmnt
of any energy : U235 ( 0,7% of natural uranium)

* Fertile element: can become fissile by capturing a neutron (Pu
created by U238, U233 created by Thorium)

* Neutron created by fission are « fast » and can’t break efficiently
U235 ( cross section) . In order to be efficient, they have to be slowed
down ( water, gaz as a moderator) BUT the absorption increases,
creating long live waste (Actinides), and creating Pu239 and Pu240 (

non fissile isotope)
* The fissile Pu 239 can be separated and reincorporated in Fuel (MOX)




Key ideas on nuclear physics (2)

* |f the neutrons are not slowed down ( Fast Neutrons), Pu239 is NOT
degraded, U238 generate Pu239

* The fuel made of Pu239 and U238 ( which makes use of the otherwise
useless U238) can be used in a breeder mode ( create more Pu) or un a
isogenerator mode ( consume as much Pu as it produces)

* |[n order to keep the neutron fast, they have to « bounce back » on heavy
atomes : water is excluded, molten lead and molten Sodium can be
efficient coolants keepin the energy of neutrons high

* The idea of fast neutron reactors dates from Fermi, as well as the
construction of the first atomic reactor!
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The High activity long life nuclear waste
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Integration of Nuclear energy in

a decarbonated economy...




SMR ?

Small reactors « small is beautiful »...
Investment more distributed in time

Useage more suitable for less intensive use
* Business case : heat generation, island provision, far from networks, dessalination plant

Easier to develop passive safety concepts
Easier to build?

Overall cost majored?

Fuel production with higher enrichment?

Proliferation?

Fuel cycle

Issue of stable provision of energy for industries not able to stop...



Renewable energy and nuclear energy ?

* Providing an additional electricity production to match the up and downs of
renewables? « en méme temps »...

* Long period adaptation ( « suivi de charge » )
=> well established but with very strict condition of operation

* High frequency adaptation ( « modulation »)
=> May trigger alternating thermal stresses and thermal incompatibilities
=> operating difficulties
=> Possible damage induced on the system

NOT A SAFETY ISSUE, BUT A DISPONIBILITY QUESTION... AND COST CONSEQUENCES



CONCLUSIONS...



After decades of intensive diabolisation and
shameless desinformation...

* Nuclear energy is a mature technology for centralised and decarbonated
electricity

* Using materials and space efficiently
e Safe in its operation and responsible whith its waste

* Able to function efficiently in an extended electricity network

e Can be adapted to other use ( heat generation...) provided the business
model is serious

* The coexistence with intermittent sources is neither catastrophic, nor
innocent, and will mst likely lead to difficulties of operation, and enhanced
damaged leading to lower disponibility
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